© Armann Ingolfsson 2014

Forecasting EMS demand, response times, and workload Armann Ingolfsson, armann.ingolfsson@ualberta.ca University of Alberta School of Business

1st International Workshop on Planning of Emergency Services: Theory and Practice, CWI, Amsterdam, 25 June 2014

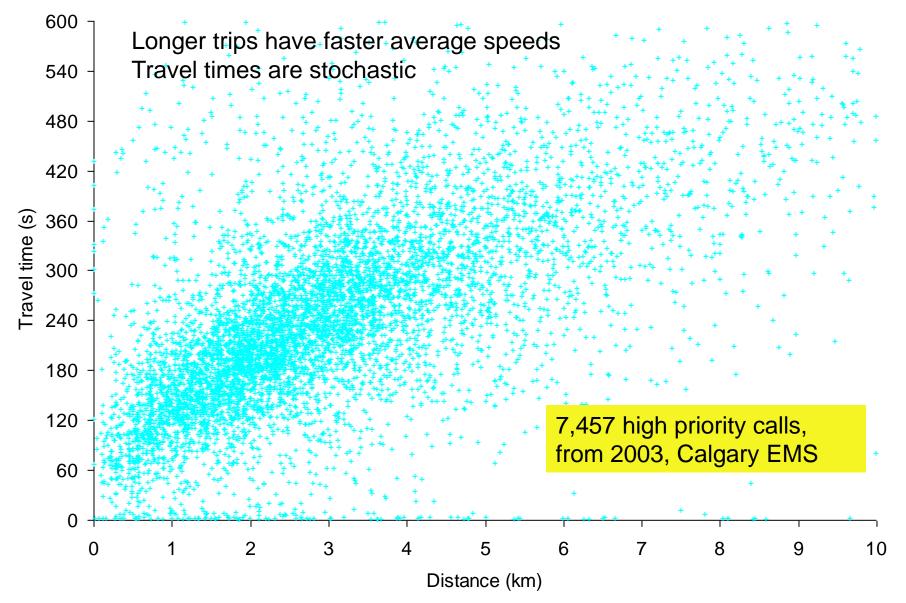
Change the Defaults:

- □ Travel time = distance / speed
- \square Travel time = f(distance)

□
$$a_{ij} = 1$$
 i is covered by *j*, 0 otherwise
☑ $p_{ij} = probability$ that *i* covers *i*

Longer trips have faster average speeds Travel times are stochastic

It's not hard to incorporate these features in most EMS planning models



Outline

- Scope and Scale
- Predicting Demand, Response Times, and Workload
- Policy Implications
- Performance Measures

Reference

Ingolfsson, A. (2013). EMS Planning and Management. In *Operations Research and Health Care Policy* (pp. 105-128). Springer New York.

International Series in Operations Research & Management Science

Gregory S. Zaric Editor

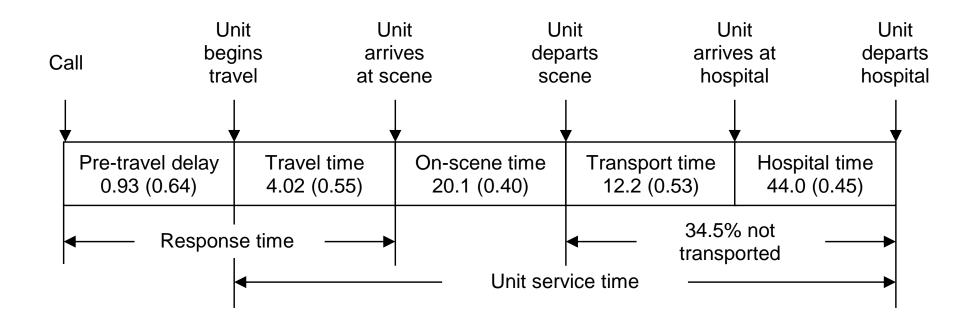
Operations Research and Health Care Policy

EMS Scope and Scale

EMS Statistics

Region (Year)	Canada (2012)	London, England (2009	United States (2011)	Rural Iceland, Scotland, Sweden (2007)
Population (000)	5,104	7,754	313,625	586
Annual calls per capita	1/8.8	1/5.24	1/8.54	1/12.1
Ambulances per capita	1/8,954	1/8,615	1/3,858	1/5,581
EMS professionals per capita	Not available	1/1,551	1/380	1/750
Annual operating expenses per capita	US\$92 (Alberta) US\$64 (Toronto)	US\$55	Not available	US\$41

EMS Call Components

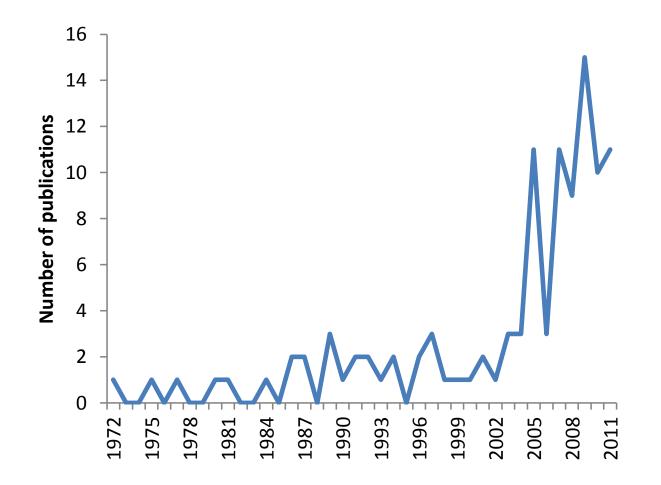


EMS Planning and Management is Challenging Because ...

 ... call volume, location, and severity are highly variable

- Planning is facilitated by ever increasing data collected by EMS agencies
 - Event time stamps
 - Geographical coordinates

OR/MS EMS Publications

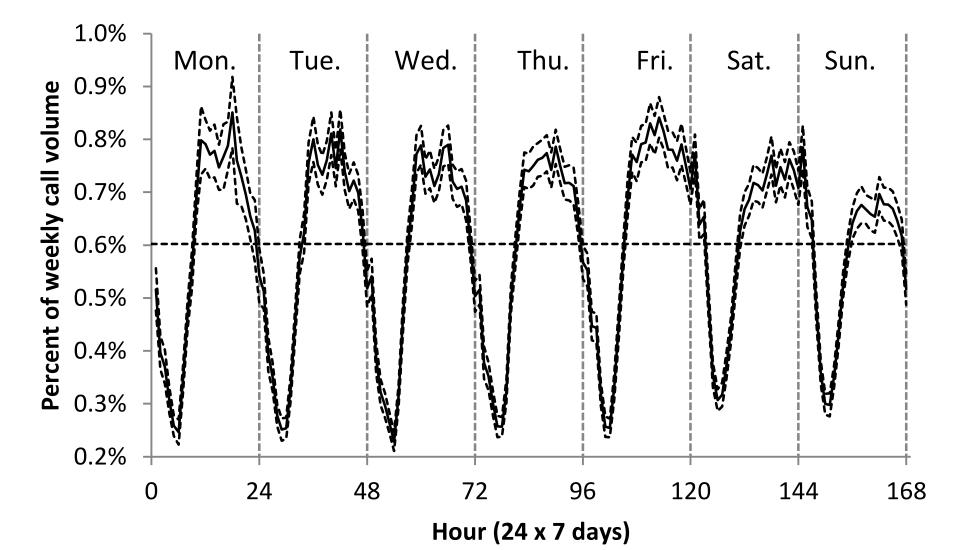


Decomposing Performance

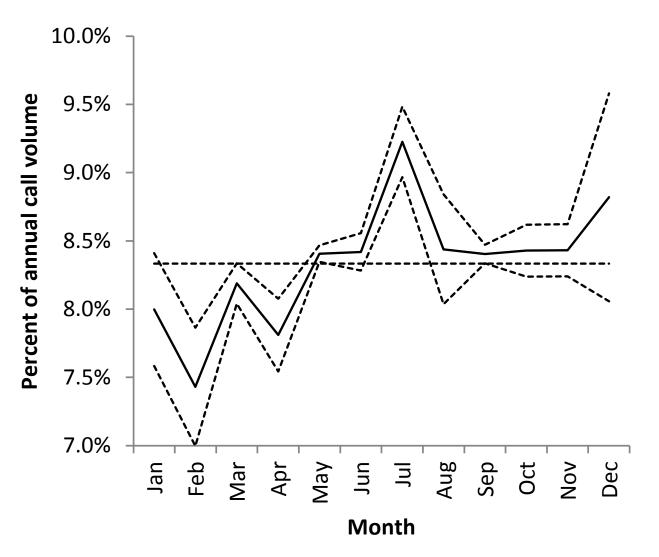
- Performance estimates:
 - p_{ij} = estimated performance for calls from *j* if station *i* responds
 - "performance:" could be coverage probability / survival probability / average response time / ...
- Dispatch probabilities:
 - f_{ij} = Pr{station i responds | call from j}
 - This is where queueing / service system models are needed
- Call arrival rates:
 - Neighborhood *j*: λ_j , system: λ
- System performance: $\sum_{j} \frac{\lambda_{j}}{\lambda} \sum_{i} f_{ij} p_{ij}$

λPredicting Demand, $ρ_{ij}$ Response Times, and Workload f_{ij}

Call Volumes: Weekly Cycle



Call Volumes: Annual Cycle



A Theory about EMS Demand

• Theory: Demand follows a Poisson arrival process

 $\Pr\{n \text{ arrivalsin } (t_1, t_2)\} = \frac{(\lambda(t_2 - t_1))^n \exp(-\lambda(t_2 - t_1))}{n!}$ $E[\text{number of arrivalsin } (t_1, t_2)] = \lambda(t_2 - t_1)$ $var[\text{number of arrivalsin } (t_1, t_2)] = \lambda(t_2 - t_1)$

Why Poisson? Theoretical Reason

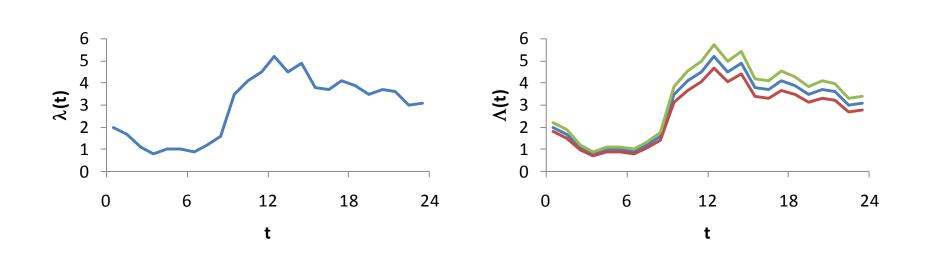
- Cox and Smith (1954): The superposition of a large number of independent renewal processes, each with a small renewal rate, approaches a Poisson process
- Interpretation: If ...
 - ... the number of potential patients is large
 - ... patients act independently
 - ... the probability of arrival for each patient in each infinitesimal interval is small
- Then the patient arrival process will be approximately Poisson
- Exercise: Think of reasons why an EMS arrival process might <u>not</u> be Poisson

Are M&Ms good?

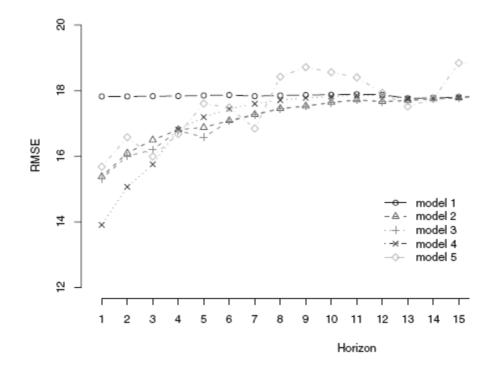
Or: If Not Poisson then What?

- If the first M in M/M/s is unrealistic, then how can we make it more realistic?
- M means interarrival times are:
 - Independent
 - Identically distributed
 - Exponentially distributed
- G/M/s?
- M(t)/M/s?
- M(t)/M/s with random arrival rate? (Cox process)

Poisson with Random Arrival Rate Arrival rate for Arrival rate for two tomorrow weeks from today



Forecasting EMS Calls: Are they Poisson?



Channouf et al. (2007), Calgary data

Channouf, N., L'Ecuyer, P., Ingolfsson, A., & Avramidis, A. N. (2007). The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Care Management Science, 10(1), 25-45.

(Much more sophisticated analysis in recent papers by Kim and Whitt)

Such as Kim, S. H., & Whitt, W. (2014). Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?. Manufacturing & Service Operations Management.

Daily average = 174 If arrivals are Poisson, then the standard deviation (= RMSE) should be $\sqrt{174} \approx 13$

RMSE(1 day ahead) ≈ 14 RMSE(2 weeks ahead) ≈ 18

Simulating tomorrow's arrivals: Almost Poisson

Simulating arrivals two weeks from now: Poisson with random rate

Within-Day Forecasting

- Forecasting arrivals from 4 to 5 pm:
 - Using calls up to midnight the day before:
 RMSE = 3.5 calls
 - Using calls up to 11 am today: RMSE = 2.3 calls

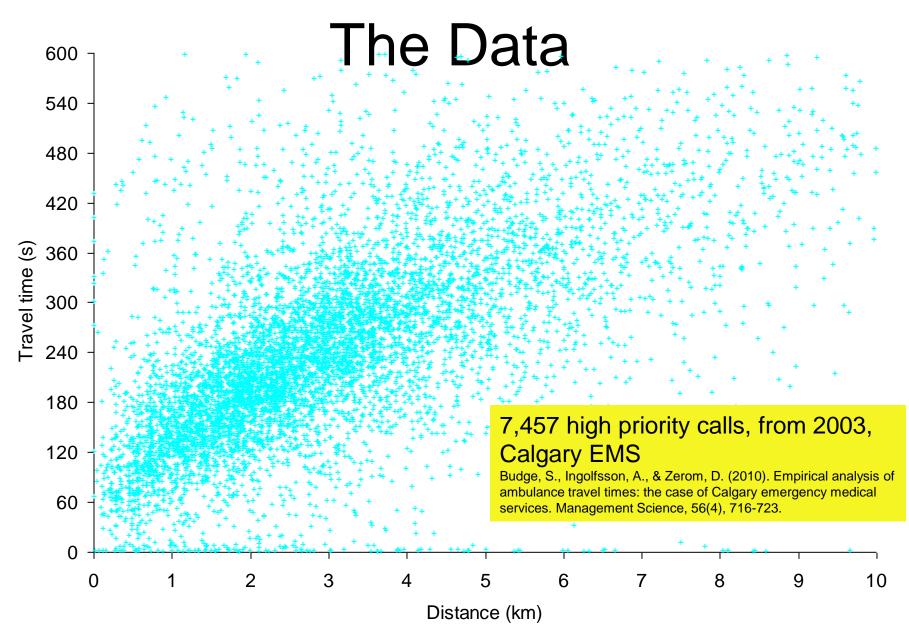
Channouf et al. (2007), Calgary data

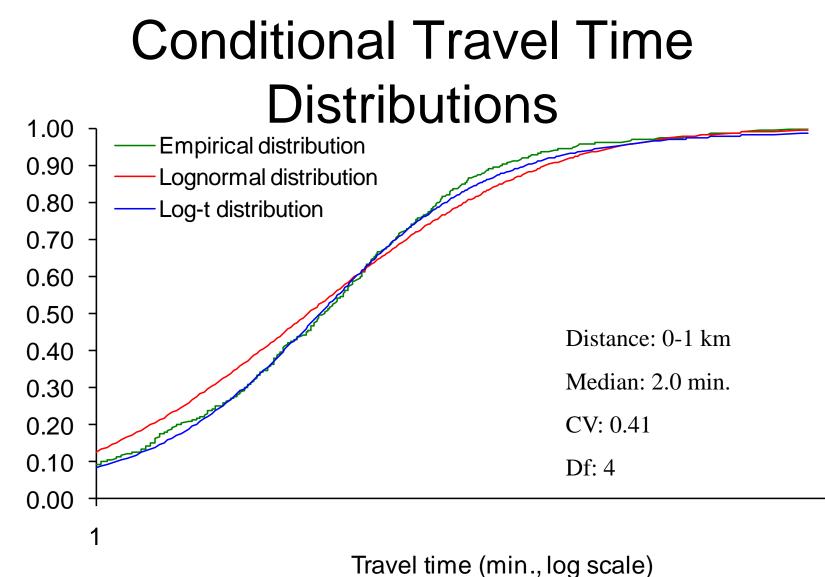
EMS Arrivals: Opportunities for Further Research

• Forecasting of arrivals over time and

Space (Setzler et al. 2009 provides one example) Setzler, H., Saydam, C., & Park, S. (2009). EMS call volume predictions: A comparative study. Computers & Operations Research, 36(6), 1843-1851.

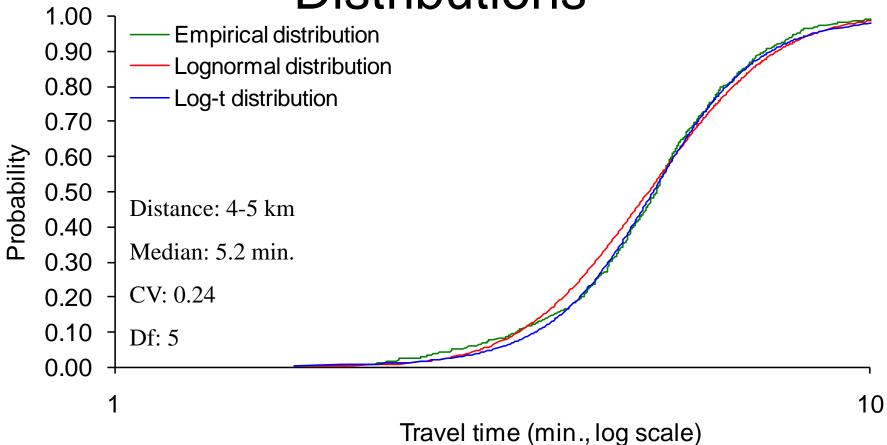
- What level of spatial resolution is needed / possible? (finer resolution dilutes sample sizes)
- What level of accuracy is needed / possible? (Poisson process with known rate gives upper bound on accuracy?)



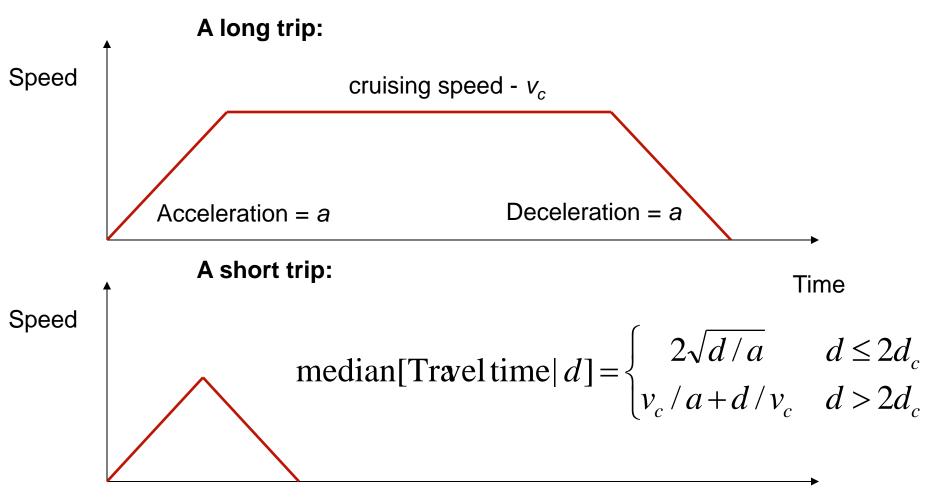


Probability

Conditional Travel Time Distributions



A "Physics 101" Model for Median Travel Time



Model

Travel time = m(distance) × exp(c(distance) × ϵ) or:

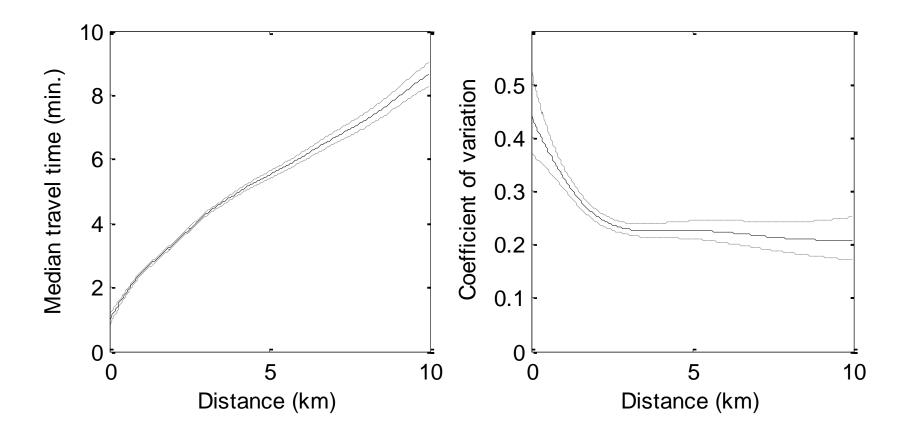
 $log(travel time) = log(m(distance)) + c(distance) \times \varepsilon$

- Log transformation to symmetry
- Median curve: m(distance)
- CV curve: c(distance)
- "Error term:" ϵ ~ Student *t* distribution
 - Better fit than normal distribution
 - Less sensitive to outliers than normal distribution

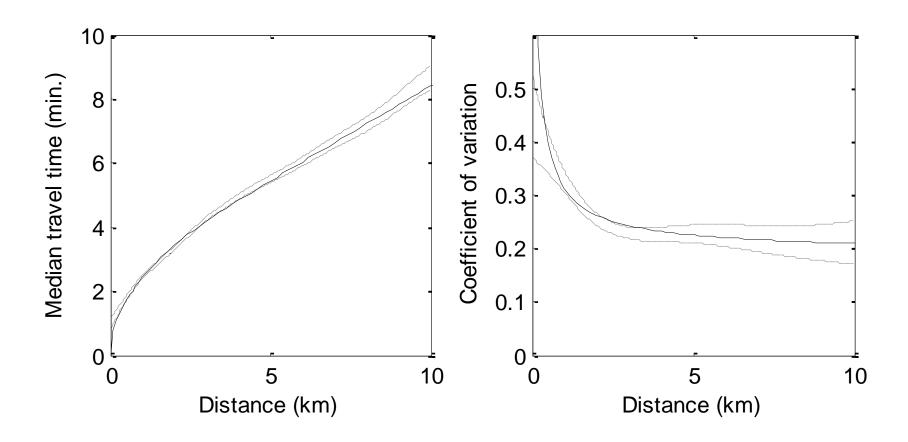
Model Estimation

- Non-parametric: Median and CV can be any smooth functions of distance
- Parametric
 - Median: RAND fire engine first-principles model
 - CV: New first-principles model

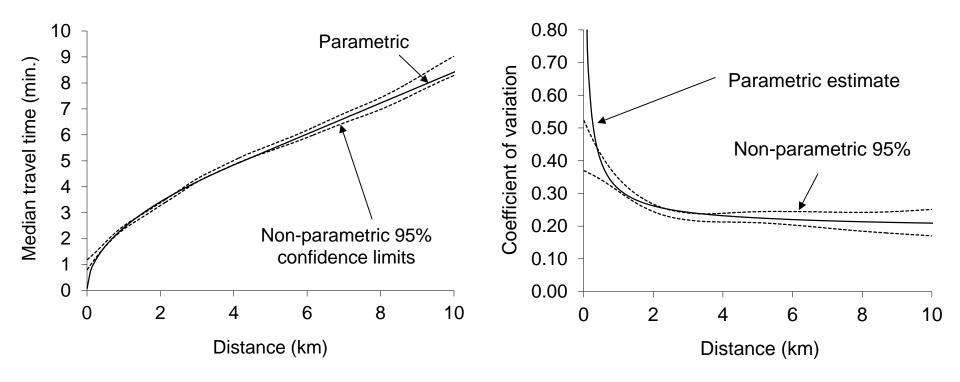
Non-parametric Functions



Parametric Functions



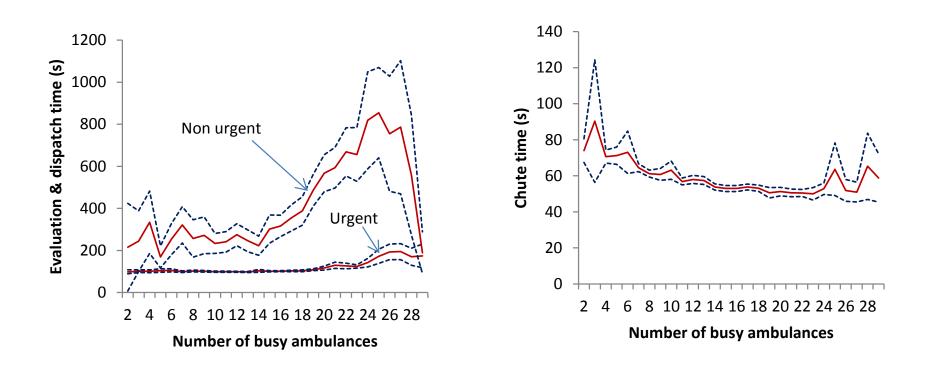
Travel Times: Median and Coefficient of Variation



 $p_{ij} = \Pr{\text{Traveltime} \le 9 \text{ min.}}$

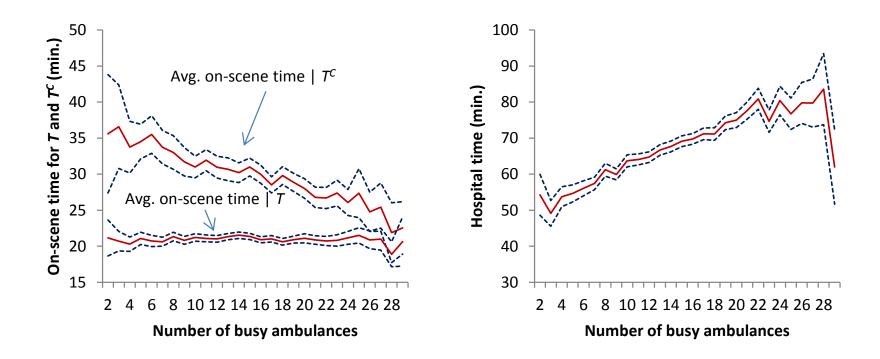
Alanis, R., Ingolfsson, A., & Kolfal, B. (2013). A Markov chain model for an EMS system with repositioning. Production and Operations Management, 22(1), 216-231.

Pre-travel Delays



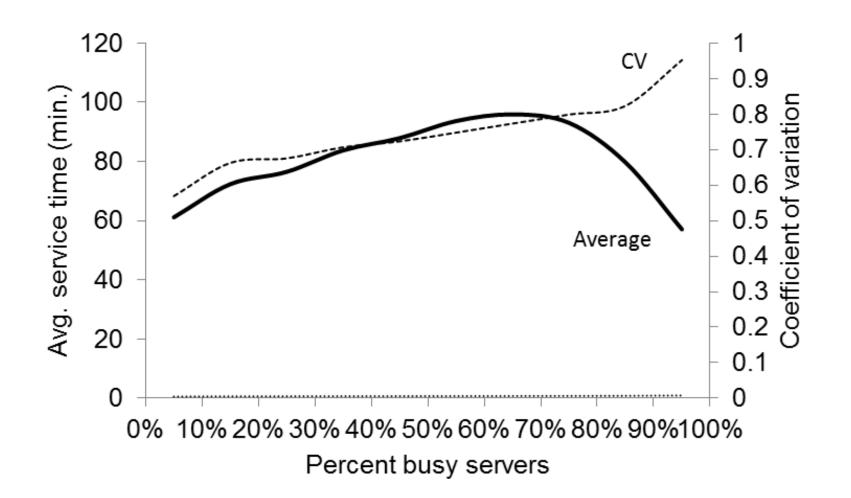
 $p_{ii} = \Pr{\text{Pre-traveldelay+Traveltime} \le 9 \text{ min.}}$

Scene and Hospital Times



Workload – needed to predict dispatch probabilities (f_{ii})

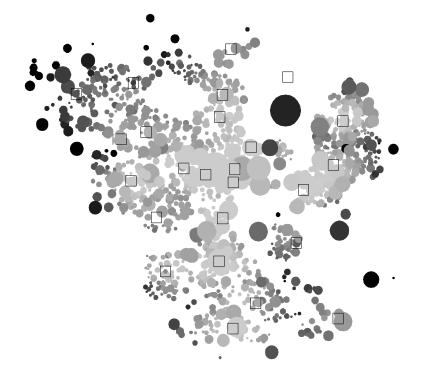
Overall Service Time

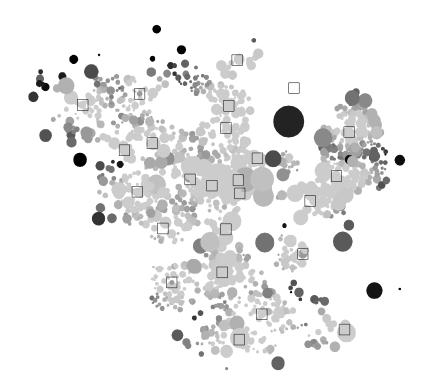


Probability-of-Coverage Maps

(a): Closest Available Ambulance Responds

(b): Closest Station Responds





Why Study EMS Data?

- <u>Fundamental knowledge</u>: Does average service time vary with system load? Why? Variation between regions and with system organization?
- <u>Modeling</u>: How can load-dependent service times be incorporated in EMS models? Validity, tractability, scalability.
- Implications for planning: How do loaddependent service times impact estimated performance and recommended number of ambulances?

Why EMS Data is Important: Another Perspective

Dear	Dr.	Tyrrel	1:
Dear	<i>D</i> 1.	1 ynci	L .

Further to our recent discussion, concerns hat to emergency medical services (EMS) respo times.

Pursuant to Section 15(1) of the *Health Qua* Quality Council of Alberta (the Council) to medical services in Alberta.

The Review shall include but is not limited to respect to:

- transition issues related to the transfer of municipalities to the former regional heat
- dispatch consolidation;

Timeline:

2009: Responsibility for EMS service in Alberta transferred from municipalities to Alberta Health Services

Feb 2012: Health Minister asks Health Quality Council to review transfer of EMS, including dispatch consolidation

(Consolidation put on hold)

Jan 2013: Review completed

ct

lth

Review of Operations of Ground Emergency Medical Services in Alberta

In Accordance with Section 15 (1) of the Health Quality Council of Alberta Act

January 2013

Because of the significant limitations in provincial EMS data some of the important questions that this review was asked to address could not be answered. For example, the time-stamp data within AAIMS are not considered sufficiently valid and there are insufficient historical data from across the province. Consequently the central question for the review concerning the impact of the transition on the provision of EMS could not be quantitatively answered.

What's needed to collect better data?

Dispatch consolidation!

Performance Measures

Performance Measures: Issues

- Report response time statistics or outcome statistics?
- Report averages, quantiles (90th percentile), or fractiles (proportion within a standard)?
- Different standards for different call types?
- Different standards for urban vs. rural?
- Report system-wide statistics or by region?

Equity

Equity: Equal Access vs. Optimize System-Wide Performance?

- In practice, rural and urban standards are different
- Equal access implies lives are valued more highly in sparsely populated areas

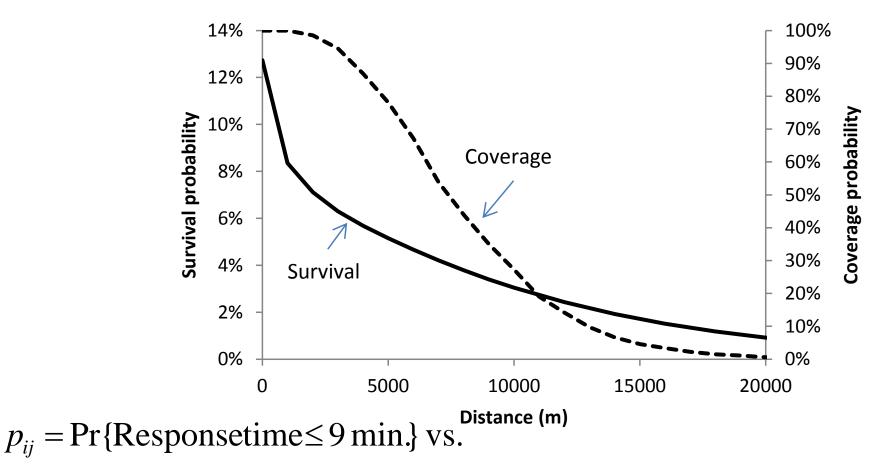
Access to Medical Care vs. Urban Sprawl

Can Medical Outcomes by Incorporated in Planning Models?

• Example of a survival probability equation for cardiac arrest patients:

$$s(I_{\rm CPR}, I_{\rm Defib}) = \frac{1}{1 + \exp(-0.260 + 0.106I_{\rm CPR} + 0.139I_{\rm Defib})}$$

Coverage vs. Survival Probabilities



 $p_{ij} = \Pr\{\text{surviva}\}$

Policy Implications

More data ...

- Computer Aided Dispatch and GPS systems collect more and more EMS data
- Makes it possible to:
 - Better understand EMS operations
 - Use more detailed models for planning
- But: Parsimony and tractability still matter

... but is it the right data?

- EMS is neither the beginning nor the end of a patient's journey through a healthcare system
- Outcomes are tracked *after* EMS
- Information about what happens before EMS typically not tracked (e.g., when did the accident occur)
- Linking EMS data to hospital data might enable EMS to be more outcome-driven