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Change the Defaults: 
 Travel time = distance / speed 

 Travel time = f(distance) 

 

  aij = 1 i is covered by j, 0 otherwise 

  pij = probability that i covers i 

 

Longer trips have faster average speeds 

Travel times are stochastic 

It’s not hard to incorporate these features in most 

EMS planning models 
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7,457 high priority calls, 

from 2003, Calgary EMS 

Longer trips have faster average speeds 

Travel times are stochastic 



Outline 

• Scope and Scale 

• Predicting Demand, Response Times, and 

Workload 

• Policy Implications 

• Performance Measures 
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EMS Scope and Scale 



EMS Statistics 

Region  

(Year) 

Canada 

(2012) 

London, 

England 

(2009 

United 

States 

(2011) 

Rural 

Iceland,  

Scotland,  

Sweden 

(2007) 

Population (000) 5,104 7,754 313,625 586 

Annual calls per capita 1/8.8 1/5.24 1/8.54 1/12.1 

Ambulances per 

capita 

1/8,954 1/8,615 1/3,858 1/5,581 

EMS professionals per 

capita 

Not available 1/1,551 1/380 1/750 

Annual operating 

expenses per capita 

US$92 (Alberta) 

US$64 (Toronto) 

US$55 Not available US$41 
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EMS Call Components 
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Call 

Unit 
begins 
travel

Unit 
arrives 

at scene

Unit 
departs 
scene

Unit 
arrives at 
hospital

Unit 
departs 
hospital

Pre-travel delay
0.93 (0.64)

Travel time
4.02 (0.55)

On-scene time
20.1 (0.40)

Transport time
12.2 (0.53)

Hospital time
44.0 (0.45)

Response time

Unit service time

34.5% not 
transported



EMS Planning and Management is 

Challenging Because … 

• … call volume, location, and severity are 

highly variable 

 

• Planning is facilitated by ever increasing 

data collected by EMS agencies 

– Event time stamps 

– Geographical coordinates 
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OR/MS EMS Publications 
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Decomposing Performance 

• Performance estimates: 

– pij = estimated performance for calls from j if station i responds 

– “performance:”  could be coverage probability /  

survival probability / average response time / … 

• Dispatch probabilities: 

– fij = Pr{station i responds | call from j} 

– This is where queueing / service system models are needed 

• Call arrival rates: 

– Neighborhood j: lj, system: l 

 

• System performance:  
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Predicting Demand,  

Response Times,  

and Workload 

l 

pij 

fij 



Call Volumes: Weekly Cycle 
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Call Volumes: Annual Cycle 
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A Theory about EMS Demand 
• Theory: Demand follows a Poisson arrival process 
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Why Poisson?  Theoretical Reason 
• Cox and Smith (1954): The superposition of a large number of 

independent renewal processes, each with a  small renewal rate, 

approaches a Poisson process 

• Interpretation: If … 

– … the number of potential patients is large 

– … patients act independently 

– … the probability of arrival for each patient in each infinitesimal interval 

is small 

• Then the patient arrival process will be approximately Poisson 

• Exercise: Think of reasons why an EMS arrival process might not 

be Poisson 
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Are M&Ms good? 
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Or: If Not Poisson then What? 

• If the first M in M/M/s is unrealistic, then how can 

we make it more realistic? 

• M means interarrival times are: 

– Independent 

– Identically distributed 

– Exponentially distributed 

• G/M/s? 

• M(t)/M/s? 

• M(t)/M/s with random arrival rate?  (Cox process) 



19 

Poisson with Random Arrival Rate 
Arrival rate for 
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Forecasting EMS Calls: Are they Poisson? 

Daily average = 174 

If arrivals are Poisson, then the 

standard deviation (= RMSE) 

should be √174 ≈ 13 

 

RMSE(1 day ahead) ≈ 14 

RMSE(2 weeks ahead) ≈ 18 

 

Simulating tomorrow’s arrivals: 

Almost Poisson 

 

Simulating arrivals two weeks 

from now: Poisson with random 

rate 

Channouf et al. (2007), Calgary data 
Channouf, N., L’Ecuyer, P., Ingolfsson, A., & Avramidis, A. N. (2007). The 

application of forecasting techniques to modeling emergency medical system 

calls in Calgary, Alberta. Health Care Management Science, 10(1), 25-45. 

(Much more sophisticated analysis in 

recent papers by Kim and Whitt) 
Such as Kim, S. H., & Whitt, W. (2014). Are Call Center and Hospital Arrivals Well Modeled 

by Nonhomogeneous Poisson Processes?. Manufacturing & Service Operations 

Management. 
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Within-Day Forecasting 

• Forecasting arrivals from 4 to 5 pm: 

– Using calls up to midnight the day before: 

RMSE = 3.5 calls 

– Using calls up to 11 am today: RMSE = 2.3 

calls 

Channouf et al. (2007), 

Calgary data 



EMS Arrivals: Opportunities for 

Further Research 

• Forecasting of arrivals over time and 

space (Setzler et al. 2009 provides one example) 
Setzler, H., Saydam, C., & Park, S. (2009). EMS call volume predictions: A comparative study. 

Computers & Operations Research, 36(6), 1843-1851. 

– What level of spatial resolution is needed / 

possible?  (finer resolution dilutes sample sizes) 

– What level of accuracy is needed / possible?  
(Poisson process with known rate gives upper bound on 

accuracy?) 
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The Data 
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7,457 high priority calls, from 2003, 

Calgary EMS 
Budge, S., Ingolfsson, A., & Zerom, D. (2010). Empirical analysis of 

ambulance travel times: the case of Calgary emergency medical 

services. Management Science, 56(4), 716-723. 
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A “Physics 101” Model for Median 

Travel Time 

Time 

Speed 

Acceleration = a 

cruising speed - vc 

Deceleration = a 

A long trip: 

Time 

Speed 

A short trip: 

28 Jan 2014 OM 702 
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Model 

Travel time = m(distance) × exp(c(distance) × e) 

or: 

log(travel time) = log(m(distance)) + c(distance) × e 

 

•  Log transformation to symmetry 

•  Median curve: m(distance)  

•  CV curve: c(distance) 

• “Error term:” e ~ Student t distribution 
– Better fit than normal distribution 

– Less sensitive to outliers than normal distribution 
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Model Estimation 

• Non-parametric: Median and CV can be 

any smooth functions of distance 

• Parametric 

– Median: RAND fire engine first-principles 

model 

– CV: New first-principles model 
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Non-parametric Functions 
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Parametric Functions 
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Travel Times: Median and 

Coefficient of Variation 
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Pre-travel Delays 
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Alanis, R., Ingolfsson, A., & Kolfal, B. 

(2013). A Markov chain model for an 

EMS system with repositioning. 

Production and Operations 

Management, 22(1), 216-231. 



Scene and Hospital Times 
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Overall Service Time 
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Probability-of-Coverage Maps 
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Why Study EMS Data? 

• Fundamental knowledge: Does average service 

time vary with system load?  Why?  Variation 

between regions and with system organization? 

• Modeling: How can load-dependent service 

times be incorporated in EMS models?  Validity, 

tractability, scalability. 

• Implications for planning: How do load-

dependent service times impact estimated 

performance and recommended number of 

ambulances? 
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Why EMS Data is Important: 

Another Perspective 
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Timeline: 

 

2009: Responsibility for EMS service 

in Alberta transferred from 

municipalities to Alberta Health 

Services 

 

Feb 2012: Health Minister asks Health 

Quality Council to review transfer of 

EMS, including dispatch consolidation 

 

(Consolidation put on hold) 

 

Jan 2013: Review completed 
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What’s needed to collect better data? 

 

Dispatch consolidation! 



Performance Measures 



 

 

 

 

Equity 

Performance Measures: Issues 

• Report response time statistics or outcome 

statistics? 

• Report averages, quantiles (90th percentile), or 

fractiles (proportion within a standard)? 

• Different standards for different call types? 

• Different standards for urban vs. rural? 

• Report system-wide statistics or by region? 
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Equity: Equal Access vs. Optimize 

System-Wide Performance? 

• In practice, rural and urban standards are 

different 

• Equal access implies lives are valued 

more highly in sparsely populated areas 

41 



Access to Medical 

Care vs. Urban 

Sprawl 

42 



Can Medical Outcomes by 

Incorporated in Planning Models? 

• Example of a survival probability equation 

for cardiac arrest patients: 

43 

DefibCPR

DefibCPR
139.0106.0260.0exp(1

1
),(

II
IIs






Coverage vs. Survival 

Probabilities 

44 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

2%

4%

6%

8%

10%

12%

14%

0 5000 10000 15000 20000

C
o

ve
ra

ge
 p

ro
b

ab
ili

ty

Su
rv

iv
al

 p
ro

b
ab

ili
ty

Distance (m)

Survival

Coverage

}survivalPr{

 vs.}min. 9  timeResponsePr{





ij

ij

p

p



Policy Implications 



More data … 

• Computer Aided Dispatch and GPS 

systems collect more and more EMS data 

• Makes it possible to: 

– Better understand EMS operations 

– Use more detailed models for planning 

• But: Parsimony and tractability still matter 
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… but is it the right data? 

• EMS is neither the beginning nor the end 

of a patient’s journey through a healthcare 

system 

• Outcomes are tracked after EMS 

• Information about what happens before 

EMS typically not tracked (e.g., when did 

the accident occur) 

• Linking EMS data to hospital data might 

enable EMS to be more outcome-driven 
47 


